
Mozilla WebThings: An open source implementation of
the Web of Things

Benjamin T. Francis
Emerging Technologies, Mozilla Corporation

bfrancis@mozilla.com

Abstract

Mozilla have implemented the WebThings Gateway (a software
distribution for smart home gateways focused on privacy, security
and interoperability) and the WebThings Framework (a collection
of re-usable software components for building web things).

These implementations follow Mozilla’s proposed Web Thing API
which closely follows the latest Editor’s Drafts from the W3C
WoT Working Group, but offers some simplifications over the
current working group deliverables.

Through these implementations Mozilla have demonstrated the
power of the Web of Things to provide interoperabilty between
otherwise incompatible smart home systems, and have identified
some gaps in current web standards which could help move the
Web of Things forward.

Keywords: Web of Things, Internet of Things, REST, HTTP,
WebSockets, Node.js, smart home, gateway

1 Introduction

For the last two years Mozilla, the not-for-profit organisation
known for the Firefox web browser, have been working on an
open source implementation of the Web of Things now known as
Mozilla WebThings.

This includes:

• WebThings Gateway - a software distribution for smart
home gateways which allows users to directly monitor
and control their home over the web without a
middleman

• WebThings Framework – a collection of re-usable
software components to help developers build their own
web things which directly expose the Web Thing API

Mozilla’s unofficial Web Thing API [Francis, 2019] specification
documents the API implemented by Mozilla WebThings, which
closely follows the W3C WoT Working Group’s latest Editor’s
drafts, but with some differences.

2 WebThings Gateway

The WebThings Gateway bridges a wide variety of popular smart
home protocols (e.g. Zigbee, Z-Wave, Bluetooth, HomeKit,
ONVIF) to a common Web Thing API (using JSON, HTTP &
WebSockets) via an extensible adapter add-ons system, and hosts
a unified web interface (an installable web application using a
W3C web app manifest and Service Workers) which allows users
to monitor, control and automate a variety of existing off-the-shelf
smart home devices.

The gateway can be used on the local home network via a .local
domain advertised by mDNS, or accessed remotely over the
public Internet using a secure tunneling service provided by
Mozilla. The tunneling service provides a dynamic, tunneled
reverse proxy using PageKite and issues unique subdomains with
automatically generated SSL certificates using LetsEncrypt. This
allows the gateway’s web interface to be safely accessed from
outside the home using an end-to-end encrypted connection,
without requiring users to open ports on their home firewall and
without Mozilla having any access to private smart home data.

The gateway can either act as a proxy for web things which
locally expose the Web Thing API (making them accessible via
the public Internet over HTTPS) or bridge another smart home
protocol to the Web Thing API with the use of an adapter add-on.

Adapter add-ons can be written in any programming language,
run in their own system process and communicate with the main
gateway process (written in Node.js) over IPC (interprocess
communication) using Nanomsg. This means that if an individual
adapter crashes, it won’t bring down the main gateway process.
The add-ons are packaged as npm packages and are installable via
the gateway’s web interface.

WebThings Gateway Architecture

mailto:bfrancis@mozilla.com
https://letsencrypt.org/
https://pagekite.net/
https://www.npmjs.com/
https://nanomsg.org/
https://iot.mozilla.org/gateway/
https://iot.mozilla.org/wot/
https://iot.mozilla.org/

WebThings Gateway is distributed as a pre-built software image
designed to be used with a Raspberry Pi single board computer, or
can optionally be built from source on Windows, MacOS or
Linux. The Mozilla IoT team is also working an a WebThings
Gateway software distribution based on OpenWrt, targeting
consumer wireless routers.

When first booted the gateway software acts a Wi-Fi access point
which can be connected to from any desktop/laptop computer,
tablet or smartphone and a web interface advertised via a captive
portal guides the user through a first time setup process.

First time setup UI

First time setup includes connecting the gateway to an existing
Wi-Fi network (or configuring a new one in the case of OpenWrt-
based builds for routers), optionally registering a subdomain with
Mozilla’s tunneling service, and creating a first user account on
the gateway. The user is then re-directed to the gateway’s web
interface via their unique subdomain or a .local domain advertised
on the network via mDNS.

The gateway’s web interface allows the user to connect smart
home devices with the gateway using push-button commissioning
(e.g. in the case of Zigbee and Z-Wave) or by scanning the local
IP network (e.g. for mDNS broadcasts).

Things UI

Smart home devices are classified using a predefined but
extensible set of “capability schemas” which define the kinds of
properties, actions and events that devices might expose. These
schemas are referenced using JSON-LD style semantic
annotations in the JSON-based Web Thing Description, as an
entry point the to Web Thing API.

The device and its properties and actions are then represented in a

graphical web interface written in HTML, CSS and JavaScript.
This representation is updated in real time and acts as a front end
for the Web Thing API (using HTTP & WebSockets).

Other features of the gateway web interface include a drag-and-
drop rules engine for defining “if this then that” style rules to
automate the home, a floorplan view where the user can lay out
their devices spatially on an interactive visual map of their home,
a logging feature which can log and visualise data from smart
home devices with interactive graphs and a smart assistant which
accepts natural language commands using text or speech to
control the home.

Rules Engine UI

The gateway also provides a mechanism for third party apps and
services to request access to smart home devices using OAuth,
where the user has full control over read or write access to
individual devices. This creates the potential for an ecosystem of
smart home apps and services designed to work with Web of
Things gateways, where users remain in full control over their
private smart home data.

3 WebThings Framework

The WebThings F ramework provides web thing server
implementations in a range of popular programming languages
and frameworks, including Node.js, Python, Java, Rust, Arduino
and MicroPython. These libraries are intended as example
implementations of how to build a “native web thing”, a device
which directly exposes the Web Thing API using a built-in HTTP/
WebSockets server.

Those devices can then be discovered by a Web of Things
gateway or client, which can automatically detect the device’s
capabilities and monitor and control it over the web.

4 Web Thing API

The Web Thing API is an unofficial specification maintained by
the Mozilla IoT team which documents the Web Thing
Description format, Web Thing REST API and Web Thing
WebSocket API used by Mozilla’s WebThings Gateway and
WebThings Framework.

The Web Thing Description section of the specification closely
follows the W3C WoT Working Group’s latest Editor’s Draft of
the Web of Things (WoT) Thing Description specification
[Kaebisch et al., 2019] and has converged significantly with that
specification over time. There are some remaining differences

https://openwrt.org/
https://iot.mozilla.org/wot/
https://iot.mozilla.org/framework/
https://iot.mozilla.org/framework/
https://iot.mozilla.org/framework/
https://iot.mozilla.org/schemas/

(e.g. “links” are used instead of “forms” in several places).

The Web Thing REST API & Web Thing WebSocket API sections
of the specification provide concrete Web of Things protocol
bindings for HTTP and WebSockets respectively, as an alternative
to the decarative approach proposed by the W3C WoT Working
Group’s Web of Things (WoT) Protocol Binding Templates
specification [Koster, 2019].

The specification does not include a scripting API equivalent to
the W3C WoT Working Group’s proposed Web of Things (WoT)
Scripting API specification [Kis et al., 2019]. It instead relies on
existing client-side DOM API specifications including
XMLHttpRequest [Kesteren et al., 2016], fetch [Kesteren et al.,
2019] and WebSocket [Hickson, 2012] to communicate with the
Web Thing API from web clients.

5 Lessons Learned

The WebThings Gateway implementation has demonstrated that it
is possible to map a range of existing smart home application
protocols such as Zigbee and Z-Wave to a common data model
(defined by a Web Thing Description specification and an
extensible system of capability schemas, serialised in JSON) and
common REST & WebSockets API (using HTTP and
WebSockets).

This has made it possible to integrate a range of existing smart
home systems and off-the-the-shelf products from different
manufacturers which were never designed to work together, by
giving those devices URLs on the World Wide Web and using a
standard data model and API to link them together.

The WebThings Framework implementation demonstrates how
web thing servers can be written in a range of different
programming languages, ranging from a more heavyweight Java
implementation for platforms like Android Things, to more
lightweight options like MicroPython and C++ for
microcontroller platforms like Arduino.

Significant remaining challenges include:

1. HTTPS on local networks

2. Authentication/authorisation for web things

3. A more lightweight alternative to the HTTP protocol

SSL encryption on the web assumes an active Internet connection
used to verify the authenticity of an SSL/TLS certificate. On a
local network servers must rely on self-signed certificates which

are not as secure and trigger warnings in web browsers. This
makes it difficult to communicate securely with devices on a local
network when a connection to the Internet is temporarily or
permanently unavailable. There is now a W3C Community group
looking at this issue.

The second challenge is the lack of standards for authenticating
and authorising a Web of Things gateway or client to access a web
thing.

The third challenge is that HTTP & WebSockets are a little too
heavyweight for some low-powered microcontrollers common on
the Internet of Things.

6 Future Work

In future the Mozilla IoT team will be exploring solutions for
using HTTPS on local networks, a potential CoAP binding of the
Web Thing API for resource constrained devices, and integrating
our WebThings Gateway software into consumer wireless routers
to address certain technical challenges and provide additional user
value as a trusted agent for the whole home network.

7 References

FRANCIS, B., 2019. Web Thing API. Mozilla. https://iot.mozilla.org/
wot/

KAEBISCH, S., KAMIYA, T., MCCOOL, M., CHARPENAY, V., 2019. Web
of Things (WoT) Thing Description. W3C.
https://w3c.github.io/wot-thing-description/

KOSTER, M., 2019. Web of Things (WoT) Protocol Binding
Templates. W3C. https://w3c.github.io/wot-binding-
templates/

KIS, Z., NIMURA, K., PEINTNER, D., HUND, J., 2019. Web of Things
(WoT) Scripting API. W3C. https://w3c.github.io/wot-
scripting-api/

KESTEREN, A., AUBOURG, J., SONG, J., 2016. XMLHttpRequest Level
1. W3C. https://www.w3.org/TR/XMLHttpRequest/

KESTEREN, A., 2019. Fetch – Living Standard. WHATWG.
https://fetch.spec.whatwg.org/

HICKSON, I., 2012. The WebSocket API. W3C. https://www.w3.org/
TR/websockets/

https://www.w3.org/TR/websockets/
https://www.w3.org/TR/websockets/
https://fetch.spec.whatwg.org/
https://www.w3.org/TR/XMLHttpRequest/
https://w3c.github.io/wot-scripting-api/
https://w3c.github.io/wot-scripting-api/
https://w3c.github.io/wot-binding-templates/
https://w3c.github.io/wot-binding-templates/
https://w3c.github.io/wot-thing-description/
https://iot.mozilla.org/wot/
https://iot.mozilla.org/wot/
https://www.w3.org/community/httpslocal/

	Abstract
	1 Introduction
	2 WebThings Gateway
	3 WebThings Framework
	4 Web Thing API
	5 Lessons Learned
	6 Future Work
	7 References

